
Math 10260 Exam 2 Solutions – Fall 2012.

1. This series is not initially a geometric series, but if we write

∞�

n=0

2n + (−1)n

3n
=

∞�

n=0

�
2

3

�n

+
∞�

n=0

�
−1

3

�n

,

then the two terms on the right hand side are both geometric series with the form a
∞�

n=0

rn with

|r| < 1 (and a = 1), and so they both converge to
a

1− r
. Therefore

∞�

n=0

2n + (−1)n

3n
=

∞�

n=0

�
2

3

�n

+
∞�

n=0

�
−1

3

�n

=
1

1− (2/3)
+

1

1− (−1/3)
= 15/4.

2. Since we’re asked to find a sum and it doesn’t look like this is going to be geometric, we hope
that it is a telescoping series. We compute the partial sum sM :

sM =
M�

n=1

�
5n

n+ 3
− 5(n+ 1)

n+ 4

�

=

�
5

4
− 10

5

�
+

�
10

5
− 15

6

�
+

�
15

6
− 20

7

�
+ · · ·+

�
5M

M + 3
− 5(M + 1)

M + 4

�

=
5

4
− 5(M + 1)

M + 4
,

since the terms telescope. Then since a series converges to L if the sequence of partial sums
converge to L, we have

∞�

n=1

�
5n

n+ 3
− 5(n+ 1)

n+ 4

�
= lim

M→∞
sM = lim

M→∞

M�

n=1

�
5n

n+ 3
− 5(n+ 1)

n+ 4

�

= lim
M→∞

5

4
− 5(M + 1)

M + 4

=
5

4
− lim

M→∞

5 + 1/M

1 + 4/M
=

5

4
− 5 =

−15

4
.

3. (I): This series has positive terms, and so we do a limit comparison test with
� 1

n2
.

lim
n→∞

3n3
+2n+1

2n5+n2

1

n2

= lim
n→∞

3n5 + 2n3 + n2

2n5 + n2
= lim

n→∞

3 + 2/n2 + 1/n3

2 + 1/n3
=

3

2
.

Since this limit is a finite number that is bigger than zero and
� 1

n2
converges (p-series with

p = 2), the series in (I) converges.

(II): Notice that the terms being added in the series don’t go to 0:

lim
n→∞

n

lnn
L’Hospital

= lim
1

1/n
= ∞.

Therefore, (II) diverges by the test for divergence.
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(III): Ratio test:

lim
n→∞

����
an+1

an

���� = lim
n→∞

�����

2
n+2

3((n+1)!)

2n+1

3(n!)

����� = lim
n→∞

����
2n+2

3((n+ 1)!)
· 3(n!)
2n+1

���� = lim
n→∞

����
2

n+ 1

���� = 0 < 1,

so the series converges by the ratio test.

4. The series is bounded as follows

∞�

n=1

sin(n2)

n2
≤

∞�

n=1

| sin(n2)|
n2

≤
∞�

n=1

1

n2
.

The last series above converges, as it is a p-series with p = 2. Therefore, by the comparison test
this series is absolutely convergent.

5. The series
∞�

n=1

(−1)n√
n+ 1

is conditionally convergent. Observe, that

(1) It is alternating.

(2) The lim
n→∞

(−1)n√
n+ 1

= 0.

(3) We have the absolute value of the sequence defining the series is decreasing:

1�
(n+ 1) + 1

=
1√
n+ 2

≤ 1√
n+ 1

.

However,
∞�

n=1

����
(−1)n√
n+ 1

���� =
∞�

n=1

1√
n+ 1

, which is divergent by the Limit Comparison Test with

bn = 1/
√
n.

6. Using the hint, we write
2x

(1− x2)2
=

d

dx

�
1

1− x2

�
.

We notice that the series on the right hand side is the geometric series with r = x2 therefore, we
have

2x

(1− x2)2
=

d

dx

� ∞�

n=0

x2n

�
=

∞�

n=1

2nx2n−1.

7. We know that ex has power series representation
∞�

n=0

xn

n!
. So we substitue x for

3

5
and we get

e3/5 =
∞�

n=0

(3
5
)n

n!
. So 2e3/5 = 2

∞�

n=0

(3
5

n
)

n!
=

∞�

n=0

2 · 3n

5n(n!)
.

8. The fouth order Taylor polynomial is given by
4�

n=0

f (n)(a)

n!
(x− a)n. So we know the (x− 3)2

coefficient must be
f (2)(3)

2!
. Thus:

f (2)(3)

2!
= 10 =⇒ f (2)(3) = 10 · 2! = 20.
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9. We use the ratio test:

lim
n→∞

����
2xn+1

3n+1(n+ 1)2
3nn2

2xn

���� = lim
n→infty

����
xn2

3(n+ 1)2

���� =
���
x

3

��� lim
n→∞

n2

(n+ 1)2
=

���
x

3

���

The ratio test tells us this series converges when the limit we just calculated is less than 1. So we

have that
���
x

3

��� < 1 =⇒ |x| < 3. Thus R = 3.

10. The power series of sin(x) is sin(x) = x− 1

6
x3 +

1

5!
x5 − · · · , and therefore the power series of

sin(x10) is x10 − 1

6
x30 +

1

5!
x50 − · · · . Accordingly, we are finding

lim
x→0

−1

6
x30 + 1

5!
x50 − · · ·

x30
= lim

x→0

(−1

6
+

1

5!
x20 − · · · ) = −1

6
.

11. First we must verify that the test is applicable. Setting f(x) =
1

x ln(x)
, the series is given by

∞�

2

f(n). Clearly this function is continuous and positive on [2,∞), and since both x and ln(x)

are increasing, f(x) is decreasing. Now we need to find the improper integral

∞�

2

1

x ln(x)
dx.

Letting u = ln(x) we have du =
1

x
dx, so that the integral becomes

∞�

2

1

x ln(x)
dx = lim

t→∞

t�

2

1

x ln(x)
dx = lim

t→∞

ln(t)�

ln(2)

1

u
du = lim

t→∞
ln(u)|ln(t)

ln(2)
= lim

t→∞
ln(ln(t))−ln(ln(2)) = ∞.

Therefore the series diverges.

12. (a) The Taylor series expansion of cos(x) is easily calculated by repeatedly differentiating cos(x),

and is given by cos(x) = 1− 1

2
x2 +

1

24
x4 − 1

6!
x6 + · · ·+ (−1)n

1

(2n)!
x2n + · · · .

(b) To find the series expansion of cos(x2) we simply replace x with x2 to get

cos(x2) = 1− 1

2
x4 +

1

24
x8 − 1

6!
x12 + · · ·+ (−1)n

1

(2n)!
x4n + · · · .

(c) We now want to find the definite integral

�
0.1

0

cos(x2)dx. We do this by integrating the series

term by term so that

�
0.1

0

cos(x2)dx =

�
0.1

0

(1− x4

2
+

x8

24
− x12

6!
+ · · ·+ (−1)n

x4n

(2n)!
+ · · · )dx

= (x− x5

10
+

x9

216
− x13

13 · 6! + · · ·+ (−1)n
x4n+1

(4n+ 1)(2n)!
+ · · · )|0.1

0

= 0.1− (0.1)5

10
+

(0.1)9

216
− (0.1)13

13 · 6! + · · ·+ (−1)n
(0.1)4n+1

(4n+ 1)(2n)!
+ · · · .

(d) Because this is a decreasing alternating series, we can estimate the integral to within 10−8 by
finding the first term which is smaller than 10−8, and only summing the terms which precede it.

This is the third term,
(0.1)9

216
. Our estimate is 0.1− (0.1)5

10
= .099999.
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13. To find the radius of convergence, lets use the Ratio Test.

lim
n→∞

����
an+1

an

���� = lim
n→∞

����
(−1)n+1(x− 4)n+1

2(n+1)((n+ 1) + 1)
· 2n(n+ 1)

(−1)n(x− 4)n

���� = lim
n→∞

����
(x− 4)

2
· n+ 1

n+ 2

���� =
|x− 4|

2
.

By Ratio Test, the series will converge if
|x− 4|

2
< 1, this is if |x− 4| < 2. Hence, the radius of

convergence is 2.
Now we need to verify convergence in the endpoints x = 2 and x = 6. When

x = 2,
∞�

n=0

(−1)n(2− 4)n

2n(n+ 1)
=

∞�

n=0

1

(n+ 1)
, which diverges by the Integral Test. At x = 6,

∞�

n=0

(−1)n(6− 4)n

2n(n+ 1)
=

∞�

n=0

(−1)n

(n+ 1)
, which converges by the Alternating Series Test. Hence, the

interval of convergence is (2, 6].
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