Math 10260 Exam 2 Solutions — Fall 2012.

1. This series is not initially a geometric series, but if we write

SIS () e ()
n=0 3 n=0 3 n=0 3
then the two terms on the right hand side are both geometric series with the form a Z r’ with
n=0
|r] <1 (and @ = 1), and so they both converge to 1 ?_ Therefore
—r
2 (1) S 2)" = -1\ 1 1
Y- () 2 G) et am

2. Since we're asked to find a sum and it doesn’t look like this is going to be geometric, we hope
that it is a telescoping series. We compute the partial sum sy;:
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since the terms telescope. Then since a series converges to L if the sequence of partial sums
converge to L, we have
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3. (I): This series has positive terms, and so we do a limit comparison test with Z —-
n
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Since this limit is a finite number that is bigger than zero and Z —; converges (p-series with
n

p = 2), the series in (I) converges.
(I): Notice that the terms being added in the series don’t go to 0:
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Therefore, (II) diverges by the test for divergence.



(III): Ratio test:
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so the series converges by the ratio test.

. The series is bounded as follows
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The last series above converges, as it is a p-series with p = 2. Therefore, by the comparison test
this series is absolutely convergent.
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. The series Z (=1 is conditionally convergent. Observe, that
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(1) It is alternating.

n=1

(2) The lim (1" =0

(3) We have the absolute value of the sequence defining the series is decreasing:
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. Using the hint, we write

(—
Vn+1

which is divergent by the Limit Comparison Test with
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We notice that the series on the right hand side is the geometric series with r = 22 therefore, we

have
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. We know that e has power series representation g —- So we substitue x for R and we get
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. The fouth order Taylor polynomial is given by Z —
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We use the ratio test:
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The ratio test tells us this series converges when the limit we just calculated is less than 1. So we
have that )%‘ <1 = |z| < 3. Thus R = 3.
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The power series of sin(z) is sin(z) =z — 61’3 + 5355 — -+, and therefore the power series of
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First we must verify that the test is applicable. Setting f(z) = , the series is given by
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Z f(n). Clearly this function is continuous and positive on [2,00), and since both = and In(x)
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are increasing, f(z) is decreasing. Now we need to find the improper integral / ﬁdm.
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Letting u = In(x) we have du = —dx, so that the integral becomes
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Therefore the series diverges.

(a) The Taylor series expansion of cos(z) is easily calculated by repeatedly differentiating cos(z),
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(b) To find the series expansion of cos(z*) we simply replace x with z? to get
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(¢) We now want to find the definite integral / cos(z®)dx. We do this by integrating the series
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term by term so that
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(d) Because this is a decreasing alternating series, we can estimate the integral to within 10™® by
finding the first term which is smaller than 10~®, and only summing the terms which precede it.
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This is the third term,



13. To find the radius of convergence, lets use the Ratio Test.
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By Ratio Test, the series will converge if |2 |

< 1, this is if |x — 4| < 2. Hence, the radius of

convergence is 2.
Now we need to verify convergence in the endpoints x = 2 and = 6. When
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interval of convergence is (2, 6].




